40 research outputs found

    Generic and patient-specific models of the arterial tree

    Get PDF
    Recent advance in imaging modalities used frequently in clinical routine can provide description of the geometrical and hemodynamical properties of the arterial tree in great detail. The combination of such information with models of blood flow of the arterial tree can provide further information, such as details in pressure and flow waves or details in the local flow field. Such knowledge maybe be critical in understanding the development or state of arterial disease and can help clinicians perform better diagnosis or plan better treatments. In the present review, the state of the art of arterial tree models is presented, ranging from 0-D lumped models, 1-D wave propagation model to more complex 3-D fluid-structure interaction models. Our development of a generic and patient-specific model of the human arterial tree permitting to study pressure and flow waves propagation in patients is presented. The predicted pressure and flow waveforms are in good agreement with the in vivo measurements. We discuss the utility of these models in different clinical application and future development of interes

    On the Estimation of Total Arterial Compliance from Aortic Pulse Wave Velocity

    Get PDF
    Total arterial compliance (C T) is a main determinant of cardiac afterload, left ventricular function and arterio-ventricular coupling. C T is physiologically more relevant than regional aortic stiffness. However, direct, in vivo, non-invasive, measurement of C T is not feasible. Several methods for indirect C T estimation require simultaneous recording of aortic flow and pressure waves, limiting C T assessment in clinical practice. In contrast, aortic pulse wave velocity (aPWV) measurement, which is considered as the "gold standard” method to assess arterial stiffness, is noninvasive and relatively easy. Our aim was to establish the relation between aPWV and C T. In total, 1000 different hemodynamic cases were simulated, by altering heart rate, compliance, resistance and geometry using an accurate, distributed, nonlinear, one-dimensional model of the arterial tree. Based on Bramwell-Hill theory, the formula CT=kaPWV2 C_{\text{T}} = k \cdot {\text{aPWV}}^{ - 2} was found to accurately estimate C T from aPWV. Coefficient k was determined both analytically and by fitting C T vs. aPWV data. C T estimation may provide an additional tool for cardiovascular risk (CV) assessment and better management of CV diseases. C T could have greater impact in assessing elderly population or subjects with elevated arterial stiffness, where aPWV seem to have limited prognostic value. Further clinical studies should be performed to validate the formula in viv

    Generic and patient-specific models of the arterial tree

    Get PDF
    Recent advance in imaging modalities used frequently in clinical routine can provide description of the geometrical and hemodynamical properties of the arterial tree in great detail. The combination of such information with models of blood flow of the arterial tree can provide further information, such as details in pressure and flow waves or details in the local flow field. Such knowledge maybe be critical in understanding the development or state of arterial disease and can help clinicians perform better diagnosis or plan better treatments. In the present review, the state of the art of arterial tree models is presented, ranging from 0-D lumped models, 1-D wave propagation model to more complex 3-D fluid-structure interaction models. Our development of a generic and patient-specific model of the human arterial tree permitting to study pressure and flow waves propagation in patients is presented. The predicted pressure and flow waveforms are in good agreement with the in vivo measurements. We discuss the utility of these models in different clinical application and future development of interest

    On the Estimation of Total Arterial Compliance from Aortic Pulse Wave Velocity

    Get PDF
    Total arterial compliance (C (T)) is a main determinant of cardiac afterload, left ventricular function and arterio-ventricular coupling. C (T) is physiologically more relevant than regional aortic stiffness. However, direct, in vivo, non-invasive, measurement of C (T) is not feasible. Several methods for indirect C (T) estimation require simultaneous recording of aortic flow and pressure waves, limiting C (T) assessment in clinical practice. In contrast, aortic pulse wave velocity (aPWV) measurement, which is considered as the "gold standard" method to assess arterial stiffness, is noninvasive and relatively easy. Our aim was to establish the relation between aPWV and C (T). In total, 1000 different hemodynamic cases were simulated, by altering heart rate, compliance, resistance and geometry using an accurate, distributed, nonlinear, one-dimensional model of the arterial tree. Based on Bramwell-Hill theory, the formula was found to accurately estimate C (T) from aPWV. Coefficient k was determined both analytically and by fitting C (T) vs. aPWV data. C (T) estimation may provide an additional tool for cardiovascular risk (CV) assessment and better management of CV diseases. C (T) could have greater impact in assessing elderly population or subjects with elevated arterial stiffness, where aPWV seem to have limited prognostic value. Further clinical studies should be performed to validate the formula in vivo

    Single breath-hold 3D measurement of left atrial volume using compressed sensing cardiovascular magnetic resonance and a non-model-based reconstruction approach

    Get PDF
    Background:Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration.Aim:To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function.Methods:A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes.Results:Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of −4.73 ± 1.75 ml (−8.67 ± 3.54 %, r² = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis “aligned” vs “not aligned” with the phantom long-axis yielded similar differences vs the reference volume (−4.87 ± 1.73 ml vs −4.45 ± 1.97 ml, p = 0.67) and short-axis “perpendicular” vs “not-perpendicular” with the LA long-axis (−4.72 ± 1.66 ml vs −4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of “slice orientation” and “reconstruction technique”, 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: −1.37 ± 1.35 ml, −2.38 ± 2.44 %, r² = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of −2.66 ± 6.5 ml (3.0 % underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown.Conclusions:The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function

    Total arterial compliance estimated by a novel method and all-cause mortality in the elderly: the PROTEGER study

    Get PDF
    Aortic stiffness, assessed by carotid-to-femoral pulse wave velocity (PWV), often fails to predict cardiovascular (CV) risk and mortality in the very elderly. This may be due to the non-linear association between PWV and compliance or to blood pressure decrease in the frailest subjects. Total arterial compliance (C T) is the most relevant arterial property regarding CV function, compared to local or regional arterial stiffness. A new method for C T estimation, based on PWV, was recently proposed. We aimed to investigate the value of C T to predict all-cause mortality at the elderly. PWV was estimated in 279 elderly subjects (85.5 ± 7.0years) who were followed up for a mean period of 12.8 ± 6.3months. C T was estimated by the formula C T = k × PWV−2; coefficient k is body-size dependent based on previous in silico simulations. Herein, k was adjusted for body mass index (BMI) with a 10% change in BMI corresponding to almost 11% change in k. For a reference BMI = 26.2kg/m2, k = 37. Survivors (n = 185) and non-survivors (n = 94) had similar PWV (14.2 ± 3.6 versus 14.9 ± 3.8m/s, respectively; p = 0.139). In contrast, non-survivors had significantly lower C T than survivors (0.198 ± 0.128 versus 0.221 ± 0.1mL/mmHg; p = 0.018). C T was a significant predictor of mortality (p = 0.022, odds ratio = 0.326), while PWV was not (p = 0.202), even after adjustment for gender, mean pressure and heart rate. Age was an independent determinant of C T (p = 0.016), but not of PWV. C T, estimated by a novel method, can predict all-cause mortality in the elderly. C T may be more sensitive arterial biomarker than PWV regarding CV risk assessment

    Brittle Mixed-Mode (I+II) Fracture: Application of the Equivalent Notch Stress Intensity Factor to the Cracks Emanating From Notches

    Get PDF
    In the present paper, crack initiation in mixed-mode (I+II) fracture has been studied using notched circular ring specimens. A new criterion of brittle mixed-mode (I+II) fracture based on the notch tangential stress and the volumetric approach has been developed. The critical value of the equivalent notch stressintensity factor has been considered as fracture toughness in mixed-mode (I+II) fracture.Исследуется зарождение трещины по смешанному механизму разрушения (типа I+II) в образцах кольцевого типа с внутренним надрезом. Предложен новый критерий для описания хрупкого разрушения смешанного типа I+II, в основу которого положен объемный подход, а базовым параметром служит касательное напряжение в надрезе. Предлагается в качестве параметра вязкости разрушения для смешанного механизма разрушения по типу I+II использовать предельное значение эквивалентного коэффициента интенсивности напряжений в надрезе.Досліджується зародження тріщини за змішаним механізмом руйнування (типу І+ІІ) в зразках кільцевого типу з внутрішнім надрізом. Запропоновано новий критерій для описання крихкого руйнування змішаного типу І+ІІ, в основу якого покладено об’ємний підхід, а базовим параметром є дотичне напруження у надрізі. За параметр в ’язкості руйнування для змішаного механізму руйнування за типом І+ІІ пропонується використовувати граничне значення еквівалентного коефіцієнта інтенсивності напружень у надрізі
    corecore